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a b s t r a c t

As reported in the literature, a sufficiently small Peclet number requires the inclusion of axial conduction
within a fluid flowing in a duct. In fluid saturated porous ducts, this phenomenon greatly increases the
heat transfer rate within the thermal entrance region. Axial conduction effects near the thermal entrance
regions in parallel-plate ducts and in circular ducts are emphasized in this study. Having metallic foams
as porous materials can cause the effective thermal conductivity to increase and this decreases the Peclet
number. Here, a simple solution is being used for determination wall heat flux near the thermal entrance
location and the result leads to a relatively simple correlation for determination of the bulk temperature.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

For passages filled with relatively high thermal conductivity
porous materials, the contribution of axial conduction becomes
significant [1]. The inclusion of the axial conduction within the ex-
act solutions of temperature fields in parallel-plate channels and
circular ducts lead to modified Graetz type solutions, as reported
in [1]. Also, for flow through a porous medium Nield et al. numer-
ically studied the contribution of axial conduction in flow between
two parallel plates in [2] and circular porous passages in [3]. These
reported numerical Nusselt number values indicate significant
variations depending on the size of the Peclet number.

The studies of heat transfer in the absence of axial conduction
are available in the literature [4–12]. Because, the placement of
porous materials in flow passages can enhance the heat transfer
rate, there is a recent interest in using this concept for electronic
cooling applications [12]. As stated earlier, the axial conduction
strongly affects the transport of thermal energy to fluid flowing
through porous passages, near the entrance region. Accordingly,
the understanding of the wall heat flux phenomena near the ther-
mal entrance region is emphasized in this presentation.

The reported study in [13] uses a closed form analytical solution
to show that conduction dominates near the location of an abrupt
temperature change. This study suggests that the effect of the
ll rights reserved.

: +1 817 272 2952.
Darcy number diminishes near the thermal entrance region as
the Peclet number becomes small. Because, as shown in [13], the
fluid velocity has a relatively small effect on heat transfer coeffi-
cient near the location where there is an abrupt temperature
change. The verification of the validity of this concept is one of
the topics in this presentation. To accomplish this task, the data re-
ported in [1] are augmented and being used in this study. There-
fore, this work becomes an extension of the earlier study
reported in [1]. However, for completeness of this presentation, a
summary of the analyses in [1] is included in the following
sections.
2. Velocity fields

Consideration is given to a steady and hydrodynamically fully
developed flow between two impermeable parallel plates and for
flow through a circular passage with an impermeable wall, as
shown in Fig. 1. Although the extended Graetz-type solution de-
tails are in [1] and [5], a summary is presented here.

The solution of Brinkman momentum equation provides the
velocity field between two parallel plates 2H apart. In dimension-
less space, when �y ¼ y=H and �u ¼ lu=ðUH2Þ, it is

�u ¼ Da 1� coshðx�yÞ
coshðxÞ

� �
ð1Þ

where U ¼ �@p=@x;x ¼ ðM DaÞ�1=2
;M ¼ le=l;Da ¼ K=H2, l is the

fluid viscosity, le the effective viscosity, and K is the permeability.
Using the definition of the average velocity,
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Nomenclature

A area, m2

Bm coefficient
Br Brinkman number, lU2/[Dake(T1–T2)]
C duct contour, m
cn coefficients
cp specific heat, J/kg K
Da Darcy number, K/H2 or K=r2

0
Dh hydraulic diameter, m
dn coefficients
F pressure coefficient
f Moody friction factor
h heat transfer coefficient W/m2 K
�h average heat transfer coefficient W/m2 K
i, j indices
K permeability, m2

ke effective thermal conductivity
Lc characteristic length, H or r0, m
M le/l
Nu Nusselt numbed hLc/k
NuD Nusselt numbed hDe/k
m,n indices
p pressure, Pa
Pe Peclet number, qcpLcU/ke

Pr Prandtl number, lcp/ke

r radial coordinate
r0 pipe radius, m
S volumetric heat source, W/m3

T temperature, K

Ti temperature in region 1 or 2
Tw wall temperature, K
u velocity, m/s
�u �u ¼ lu=ðUL2

c Þ
U average velocity, m/s
�U average value of �u
x axial coordinate, m
�x x/(PeH) or �x ¼ x=ðPer0Þ
y coordinates, m
�y y/a

Greek
b coefficients
U �@ p/@ x
km eigenvalues
hi (T – Ti)/(T1–T2), i = 1 or 2
l fluid viscosity, N s/m2

le effective viscosity, N s/m2

wm eigenfunctions
q density, kg/m3

g y/H or r/r0

x parameter, 1=
ffiffiffiffiffiffiffiffiffiffiffi
MDa
p

Subscripts
L large
S small
w wall
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�U ¼
Z 1

0

�ud�y ¼ Da 1� tanhðxÞ
x

� �
; ð2Þ

the dimensionless velocity takes the form

u
U
¼

�u
�U
¼ x

x� tanhðxÞ 1� coshðx�yÞ
coshðxÞ

� �
ð3Þ

for inclusion in the energy equation.
Similarly, the velocity field within a fluid saturated circular pas-

sage with radius ro, as given in [1,5] is

�u ¼ Da 1� I0ðx�rÞ
I0ðxÞ

� �
ð4Þ

where �r ¼ r=r0; �u ¼ lu=ðUr2
0Þ, Da ¼ K=r2

0, and x ¼ ðM DaÞ�1=2. Also,
by definition, the mean velocity is

U ¼ 2
r2

0

Z r0

0
urdr ð5Þ

and the dimensionless velocity profile take the following form
 x 
u (y,z )

x 

T 1

T w

 Flow 

  x = 0 
  x > 0   x < 0 

T 2

T w = T 1 when x < 0

T w = T 2 when x > 0

Fig. 1. Schematic of a duct with prescribed surface temperatures.
u
U
¼

�u
�U
¼ xI0ðxÞ

xI0ðxÞ � 2I1ðxÞ
1� I0ðx�rÞ

I0ðxÞ

� �
: ð6Þ
3. Temperature solutions

The energy equation assuming local thermal equilibrium, as re-
ported in [1] for these two channels are

u
@T
@x
¼ ke

qcp

@2T
@x2 þ

@2T
@y2

 !
ð7Þ

for parallel-plate ducts and

u
@T
@x
¼ ke

qcp

@2T
@r2 þ

1
r
@T
@r
þ @

2T
@x2

 !
ð8Þ

for circular ducts. In the dimensionless space the axial coordinate is
�x ¼ x=ðPeHÞ where Pe = UH/a for parallel-plate ducts while for cir-
cular ducts �x ¼ x=ðPer0Þ where Pe = qcpr0U/ke. In this formulation,
T1 is the wall temperature when x < 0 and T2 is the wall temperature
when x > 0. Accordingly, the appropriate dimensionless tempera-
tures forms are h1 = (T – T1)/(T1 – T2) when x < 0 and h2 = (T – T2)/
(T1 – T2) when x > 0. Then, in the dimensionless space, Eqs. (7)
and (8) are being combined and they take the form

1
ge

@

@g
ge @hi

@g

� �
¼ u

U
@hi

@�x
� 1

Pe2

@2hi

@�x2 : ð9Þ

In this equation, for parallel-plate ducts, e = 0 and parameter g
stands for the dimensionless Cartesian coordinate y/H while for cir-
cular ducts e = 1 and parameter g stands for the dimensionless ra-
dial coordinate r/r0. The reduced forms of temperature solutions of
Eq. (9) for h1 and h2, as given in [1], are
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Fig. 2. The Nusselt number for slug flow over a flat plate, for a semi-infinite
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h1 ¼
X1
m¼1

AmwmðgÞek2
m�x when x < 0 ð10Þ

and

h2 ¼
X1
m¼1

BmwmðgÞe�k2
m�x when x > 0 ð11Þ

where the eigenvalues km are real but different for h1 and h2 solu-
tions while

wmðgÞ ¼
X1
n¼0

cngn: ð12Þ

The method of determination of km and coefficients cn are in [1].
Once the eigenvalues are known, the orthogonality conditionZ 1

0

k2
m þ k2

n

Pe2 � uðgÞ
U

" #
wnðgÞwmðgÞ � gedg ¼

0 when n–m

Nm when n ¼ m

�

ð13Þ

provides the coefficients Am and Bm as

Am ¼
2
km

1
½dwmðgÞ=dkm�g¼1

ð14aÞ

and

Bm ¼ �
2
km

1
½dwmðgÞ=dkm�g¼1

: ð14bÞ

Numerical values of the Nusselt number and the bulk tempera-
ture for different Pe and MDa parameters from [1] are being used
to evaluate the application of findings reported in [13] to heat
transfer in porous passage. The numerical data are acquired for
the Nusselt number [1] from the equation

NuD ¼ hDh=ke ¼ �
2ð2� eÞ

hb

X1
m¼1

Bm
dwmðgÞ

dg

����
g¼1

e�k2
m�x ð15Þ

and for the bulk temperature from the relation

hb ¼
Tb � T2

T1 � T2
¼ ð1þ eÞ

X1
m¼1

Bme�k2
m

Z 1

0

u
U

	 

wmðgÞgedg ð16Þ

where e = 0 for Cartesian coordinates and e = 1 for cylindrical
coordinates.

The exact analysis can provide accurate solutions for the Nus-
selt number when x is relatively large. At small values of �x, the
number of eigenvalues must be substantially increased. The study
presented in [13] leads to a methodology that would provide a
remedy for this situation.
4. Solutions at small-x values

The study in [13] concerns with a fluid in a semi-infinite region
flowing at a constant velocity over a flat plate. The result leads to a
closed-form solution for determination of heat transfer using the
slug flow condition. The heat transfer coefficient defined in [13]
as h0 = qw/(Tw – Ti) is being used here. Therefore, the dimensionless
quantity representing this heat transfer coefficient is the Nusselt
number Nu0 = h0H/ke for parallel-plate ducts and Nu0 = h0r0/ke

for circular ducts. Since the Stanton number is St = Nu0/Pe, then
Eq. (23b) in [13] leads to the relation

Nu0;S¼
Pe
2p

exp½Peðx=LcÞ=2�fK0½Peðx=LcÞ=2�þK1½Peðx=LcÞ=2�g ð17aÞ

where K0[Pe(x/Lc)/2] and K1[Pe(x/Lc)/2] are the modified Bessel
functions. As an accurate estimation, Eq. (17a), for a range of Pe(x/
Lc) < 2, can be written as
Nu0;S ffi
exp½Peðx=LcÞ=2�

2pðx=LcÞ
2� Peðx=LcÞ 0:5772½1þ Pe2ðx=LcÞ2=8�

hn
þ½1� Peðx=LcÞ4þ Pe2ðx=LcÞ2=8� lnðxPe=4LcÞ

io
: ð17bÞ

The solid lines in Fig. 2 show the values of Nu0 for Pe = 1, 2, 5, 10,
computed using Eq. (17a). As x becomes small, the solid lines ap-
proach the dash line that represents the values of Nu0 = 1/[p(x/
Lc)], for pure conduction when the fluid velocity is equal to zero.
Also, it can be shown mathematically that Eq. (17a) or Eq. (17b)
would approach asymptotically to Nu0 = 1/[p(x/Lc)] as Pe ? 0.

The dot-dash lines with symbols plotted in Fig. 3(a) are taken
from the solutions in [1] for Pe = 1. The dot-dash lines describe a
broad range of MDa values 10�5, 10�3, and 1 and they are identified
by designated symbols. The dash line and the solid line as they ap-
pear in Fig. 3(a) are imported from Fig. 2. They clearly show that for
a small Peclet numbers, the discrete symbols are located between
the dash line and the solid line while the MDa effect is being very
small. Therefore, the dash line can provide a limiting condition as x
becomes very small. Fig. 3(a) clearly shows a unique feature of this
small-x solution when Pe is small. As can be seen, the effect of the
MDa values on the Nusselt number Nu0 diminishes at relatively
small Pe values. To further elaborate on this issue, Fig. 3(b) con-
tains discrete data imported also from [1] for Pe = 2 and prepared
in a similar manner as described for Fig. 3(a). Again, the symbols
are clearly located between the solid line and the dash line. How-
ever, the influence of MDa values on Nu0 is slightly larger. This pro-
cess is repeated for Pe = 5 and 10 and discrete data are plotted in
Fig. 3(c and d), respectively. The results show similar behaviors
while the influence of the MDa values on Nu0 is increasing as Pe in-
creases. It is remarkable that the line for slug flow clearly passes
through the symbols for MDa = 10�5 and the symbols for MDa = 1
arrive toward the line for no flow passes, as x decreases.

The application of the asymptotic solution to circular passages
can show the curvature effect. The discrete symbols in Fig. 4(a–
d) are also taken from the series solution. Fig. 4(a) shows that
the data at small x values behave similar to those in Fig. 3(a).
Therefore, the dash line or the solid line can provide a reasonable
asymptotic solution. Also, these figures show that the effect of
MDa values on Nu0 become small as Pe reduces. The effect of cur-
vature on the Nu0 values is clearly detectable by comparing the ‘‘�”
symbols in Fig. 4(d) with those in Fig. 3(d). In Fig. 4(d), the ‘‘�”
symbols are located along the solid line for x/r0 < 0.02. In
Fig. 3(d), these symbols remain along the solid line for a relatively
long distance while, in Fig. 4(d), the ‘‘�” symbols begin to depart
from the solid line near x/r0�0.02.
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Fig. 3. Local Nusselt number for parallel plate ducts (a) when Pe = 1, (b) when Pe = 2, (c) when Pe = 5, and (d) when Pe = 10.
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Fig. 4. Local Nusselt number for circular ducts (a) when Pe = 1, (b) when Pe = 2, (c) when Pe = 5, and (d) when Pe = 10.
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Table 1
Parameters for determination of asymptotic values for parallel-plate ducts.

MDa Pe k2
1 Cþ1 Dþ1 hb(0) Nu(1)

1 0.5 0.6400 1.145 0.5748 0.5893 1.992
1 1.0511 1.275 0.6500 0.669 1.961
2 1.4799 1.461 0.7568 0.784 1.930
3 1.6442 1.564 0.8159 0.849 1.917
5 1.8009 1.653 0.8668 0.910 1.908
7 1.847 1.686 0.8856 0.937 1.904

10 1.8736 1.706 0.8967 0.956 1.902

10�2 0.5 0.6597 1.161 0.5128 0.576 2.265
1 1.1139 1.309 0.5799 0.646 2.258
2 1.6343 1.537 0.6832 0.755 2.250
3 1.8829 1.678 0.7471 0.825 2.246
5 2.0830 1.813 0.8083 0.895 2.243
7 2.1546 1.867 0.8326 0.927 2.242

10 2.1968 1.900 0.8478 0.951 2.241

10�3 0.5 0.6669 1.161 0.4849 0.571 2.394
1 1.1373 1.309 0.5472 0.636 2.393
2 1.6946 1.544 0.6457 0.741 2.392
3 1.9717 1.696 0.7093 0.810 2.391
5 2.2022 1.847 0.7725 0.884 2.391
7 2.2867 1.909 0.7986 0.919 2.390

10 2.3372 1.948 0.8151 0.945 2.390

10�5 0.5 0.6699 1.158 0.4707 0.567 2.460
1 1.1473 1.304 0.5302 0.630 2.460
2 1.7213 1.538 0.6258 0.732 2.460
3 2.0114 1.692 0.6878 0.801 2.460
5 2.2566 1.847 0.7511 0.875 2.460
7 2.3474 1.913 0.7777 0.911 2.460

10 2.4021 1.954 0.7945 0.938 2.460

Table 2
Parameters for determination of asymptotic values for circular ducts.

MDa Pe k2
1 Cþ1 Dþ1 hb(0) Nu(1)

1 0.5 1.0238 1.076 0.5301 0.564 2.029
1 1.7492 1.149 0.5811 0.624 1.978
2 2.6123 1.271 0.6622 0.720 1.919
3 3.0427 1.351 0.7148 0.786 1.890
5 3.4014 1.432 0.7672 0.859 1.866
7 3.5332 1.466 0.7889 0.895 1.858

10 3.6119 1.487 0.8026 0.925 1.853

10�2 0.5 1.0610 1.106 0.4496 0.551 2.460
1 1.8759 1.207 0.4937 0.600 2.445
2 2.9672 1.382 0.5698 0.685 2.426
3 3.5985 1.513 0.6265 0.750 2.415
5 4.2044 1.668 0.6935 0.832 2.405
7 4.4546 1.742 0.7257 0.876 2.401

10 4.6136 1.794 0.7480 0.913 2.398

10�3 0.5 1.0766 1.108 0.4066 0.544 2.725
1 1.9304 1.212 0.4451 0.587 2.722
2 3.1295 1.397 0.5136 0.665 2.719
3 3.8676 1.542 0.5674 0.727 2.718
5 4.6245 1.727 0.6358 0.811 2.716
7 4.9567 1.823 0.6714 0.859 2.715

10 5.1759 1.892 0.6972 0.900 2.714

10�5 0.5 1.0832 1.104 0.3842 0.541 2.873
1 1.9537 1.205 0.4193 0.580 2.873
2 3.2011 1.386 0.4823 0.652 2.873
3 3.9893 1.532 0.5330 0.711 2.873
5 4.8223 1.723 0.5995 0.794 2.873
7 5.1984 1.826 0.6354 0.843 2.873

10 5.4514 1.902 0.6620 0.886 2.873
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Now, it is possible to present the asymptotic behaviors of the
Nusselt number values. At small values of x, the effect of Darcy
numbers disappears and the asymptotic values of the Nusselt
number is the same as those in [14,15]. At large values of x, one-
term solutions for the Nusselt number and bulk temperature are

Nu0 ¼ �B1
dw1ðgÞ

dg

����
g¼1

e�k2
1
�x ¼ Cþ1 e�k2

1
�x ð18Þ

hb ¼ ð1þ eÞB1e�k2
1

Z 1

0

u
U

	 

w1ðgÞgedg ¼ Dþ1 e�k2

1 : ð19Þ

The coefficients k2
1, Cþ1 , and Dþ1 , when x is positive, are in Tables 1

and 2, for selected MDa and Pe parameters. The error for each entry
is mainly due to the truncation error within the last digit. These
relations show that the large-x asymptotic solution for the Nusselt
number reduces to

hLc

k
¼ Nu0

hb

� �
¼ Cþ1

Dþ1

� �
ð20Þ

and it becomes the thermally fully-developed value.
Knowledge of the bulk temperature in these passages is often

needed in the design of heat transfer devices. As shown in [14]
for parallel-plate ducts and in [15] for circular ducts, the bulk tem-
perature can be estimated if certain variables are available. For free
flow through channels [16], a single correlation provided the bulk
temperature values with reasonable accuracy; that is [14,15],

hbðxÞ ¼
ðx=LcÞDþ1 þ bhbð0Þ
ðx=LcÞ þ b

� �
expð�k2

1�xÞ ð21aÞ

where b = 0.25 and Lc is the characteristic length. This relation can
be modified in order to include the effect of MDa values. Clearly, the
values of hb(0), k2

1 and Dþ1 are in Tables 1 and 2 for a range of Pe and
MDa values. Using a modified form of parameter b, this equation
equally applies to these two passages, when filled with porous
materials. Accordingly, the parameter b for these porous passages
depends on the Darcy and Peclet numbers and it can be estimated
from the relation
b ffi 0:1þ 0:15
1

1þ 0:15x=Pe1:7

 !
ð21bÞ

where x ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffi
MDa
p

. It is to be noted that for free flow in these pas-
sages x = 0 and that makes b = 0.25. Figs. 5–10(b) include the con-
tribution of these asymptotic solutions that is valid over the entire
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Fig. 8. The circular ducts asymptotic values (a) for the Nusselt number Nu = hH/ke

and (b) for the bulk temperature as a function of (x/r0)/Pe when MDa = 1.
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range of listed parameters. The symbols in Figs. 5–7(b) show the
values of bulk temperature from Eqs. (21a). These figures also in-
clude the bulk temperature values imported from [1], for parallel
plate channels. The plotted symbols taken from this correlation
agree well with the solid lines from [1]. This comparison process
is repeated for circular ducts and the results are presented in Figs.
8–10(b). These figures show reasonably good agreements between
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Fig. 7. The parallel plate ducts asymptotic values (a) for the Nusselt number Nu =
hH/ke and (b) for the bulk temperature as a function of (x/H)/Pe when MDa = 10�5.
the bulk temperature values from Eq. (21a) and computed values
using the series solution, for these two ducts.

An examination of Figs. 3 and 4(a–d) shows that for each Pe, the
Nu0 values at different MDa parameters are located within a nar-
row band between the solid line and the dash line. Therefore, it
is possible to use Eq. (17a) in order to estimate the values of
Nu0,S at small values of the axial coordinate. To accomplish this
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Fig. 9. The circular ducts asymptotic values (a) for the Nusselt number Nu = hH/ke

and (b) for the bulk temperature as a function of (x/r0)/Pe when MDa = 10�3.
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task, as an approximation, the parameter Pe in Eq. (17a) is to be re-
placed by

Pe� ¼ Pe
1

1þ 7ðMDaÞ0:4

" #
: ð22Þ

Using this transformation, the Eq. (17a) can provide reasonably
accurate small-x data in comparison with the dot-dash lines in
Fig. 3(a–d) for Pe = 1, 2, 5, and 10, for parallel-plate ducts. This pro-
cess was repeated for circular ducts and the results were compared
with the dot-dash lines in Fig. 4(a–d). They indicated comparable
accuracy similar to those in Fig. 3(a–d) while the deviation due
to the curvature effect was relatively small, as expected. Having
a correlation for the bulk temperature and Nu0 from the modified
form of Eq. (17a), the value of the asymptotic values of Nu = hH/ke

are computed and they are compared with data appearing in Figs.
5–7(a). The results show good agreements for a relatively large
range of the axial coordinate. Also, Figs. 8–10(a) show the behavior
of this asymptotic solution for Nu ¼ h r0=ke, as applied to circular
ducts. This indicates that one could use this asymptotic solution
in order to determine the heat transfer near the thermal entrance
location. The valuable information of this type is attainable with
ease without using a series solution that requires a large number
of terms.

Furthermore, for flow in porous passages, the condition of a lo-
cal thermal non-equilibrium exists adjacent to the temperature
jump location at the wall. In the formulation of Eq. (17a), the exis-
tence of the local thermal equilibrium is commonly hypothesized.
However, as x approaches zero, this condition does not exist. There
are relations in the literature for estimation of the heat transfer
coefficient within the pore. As an example, Wakao and Kaguei
[17] presented a correlation for a packed bed of spherical particles
as
h
kf d
¼ 2þ 1:1Re0:6Pr1=3 ð23Þ

where Re = eupd/m, and d is the mean diameter of the spherical par-
ticles. Also, Minkowycz et al. [18] introduced a relation

hrh

kf
¼ 0:92
½1þ ðAc � 4pr2

hÞ=Ac�
ð24Þ

where Ac is the mean cross section area of the pores, h is the mean
heat transfer coefficient in the pores, and rh is the pores’ hydraulic
radius. Moreover, at x = 0 location, the wall heat flux is related to
qw � ke(Tw - Ti)/ep where ep is the mean pore dimension and this
makes

Nu0 ¼
h0Lc

ke
� 1

ep=Lc
ð25Þ

Therefore, ax x becomes very small, Nu0 should remain within the
order of this estimated value of Lc/ep at x = 0 location. Further and
detailed studies related to the local thermal non-equilibrium phe-
nomenon in a parallel plate duct are in [19].
5. Conclusion

This study shows that the solutions for heat transfer at small
values of x have small dependency on the size of the Peclet number
and the functional form of the velocity field described by the Darcy
number. As shown in Figs. 3 and 4(a–d), for x/Lc < 0.05, the Nu0(x)
solution has a small dependency on the Darcy number. Also, no
flow condition and the slug flow serve as a lower limit and an
upper limit.

The approximate values based on asymptotic solution can be
useful for estimation of the effects of axial thermal conduction.
When the actual information for porous passages is not available,
the Nusselt number can be estimated at small x values by interpo-
lation between solutions for clear flow and slug flow for the same
Peclet number. Also, one can use information at large and small x
values to determine the bulk temperature. Indeed, the determined
bulk temperature is useful information in design of the heat trans-
fer devices.
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